

Boundary manifold and complement of complex line arrangement

Enrique Artal Bartolo, Benoît Guerville, Miguel Marco Buzunáriz

Introduction

Let $\mathcal{A} = \{L_0, \dots, L_n\}$ be a line arrangement in $\mathbb{P}^2 := \mathbb{CP}^2$. There are two important topological objects associated to \mathcal{A} : the pair $(\mathbb{P}^2, \bigcup \mathcal{A})$ and the complement $\mathbb{P}^2 \setminus \bigcup \mathcal{A}$. Let $N(\mathcal{A})$ be a closed regular neigbourhood of \mathcal{A} ; the exterior $E(\mathcal{A})$ of \mathcal{A} is the closure $\mathbb{P}^2 \setminus N(\mathcal{A})$. The boundary manifold $M(\mathcal{A})$ of \mathcal{A} is the common boundary of $E(\mathcal{A})$ and $N(\mathcal{A})$. The starting point is E. Hironaka's article [Hir97], where she studies the relation between the homotopy type of a real arrangement exterior and the boundary

manifold. From this relation she deduces a relation between the fundamental groups of this two spaces. We extend the result to the complex arrangement.

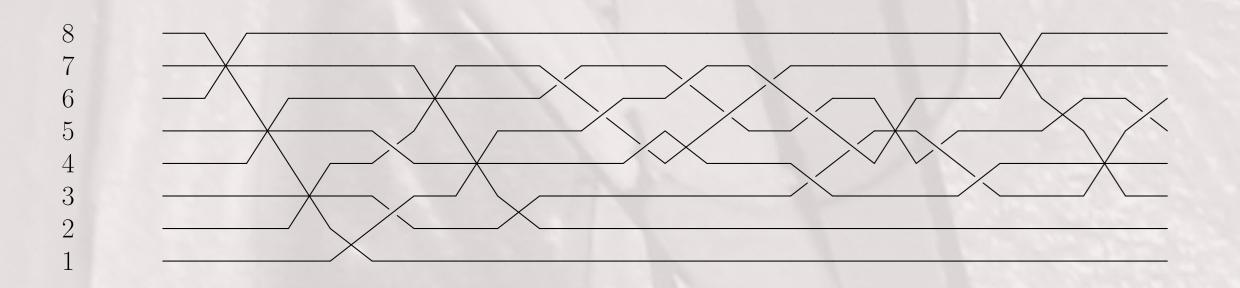
Combinatorics and wiring diagram Let $\mathcal{P} = \{P_1, \dots, P_k\}$ be the set of the singular points of $\mathcal{A}, p : \mathbb{C}^2 \to \mathbb{C}$ be a generic projection. We note $\mathcal{Q} = \{Q_1, \dots, Q_k\}$ the images of the singular points of \mathcal{A} by the projection p. The main result Definition. For any cycle γ in $W_{\mathcal{A}}$, we define the upper word σ_{γ} by : $\sigma_{\gamma} = \prod a_{\mathfrak{s}}^{e(\mathfrak{s},\gamma)},$

points of \mathcal{A} by the projection p. Consider a path γ : $[0,1] \rightarrow \mathbb{C}$ with no self-intersection, and such that $\mathcal{Q} \subset \gamma([0,1])$.

Definition. The wiring diagram associated to the path γ is the subset of $[0,1] \times \mathbb{C}$ defined by :

 $W_{\mathcal{A},\gamma} = \left\{ (t, p^{-1}(\gamma(t)) \cap \mathcal{A}) \mid t \in [0, 1] \right\}$

For example, the wiring diagram of the positive MacLane arrangement is :



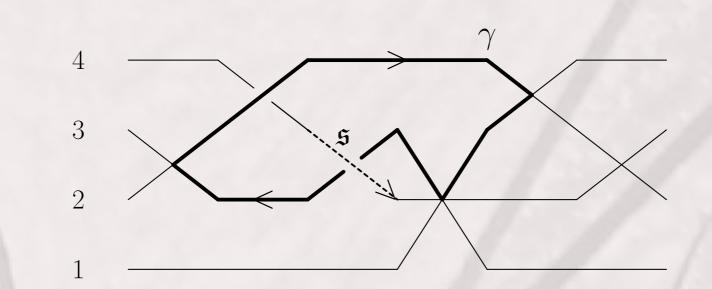
The incidence graph is a subgraph of the Hasse diagram of the arrangement, in which we only keep the vertices of rank 1 and 0. It contain all the combinatorics informations of the arrangement.

Definition. Let \mathcal{A} be a line arrangement in \mathbb{CP}^2 , and $\Gamma(\mathcal{A})$ be the nonoriented bipartite graph defined by :

Doint wortions
$$D \subset \mathcal{D}$$

where $e(\mathfrak{s}, \gamma)$ is 1 (resp. -1) if the crossing is positive (resp. negative), and $a_{\mathfrak{s}}$ the word of Arvola of \mathfrak{s} and S_{γ} the set of segment of $W_{\mathcal{A}}$ intersecting uppermost γ .

 $\mathfrak{s} \in S_{\gamma}$



In the example at the left, the segment \mathfrak{s} (dashed line) is the only one upper segment of the cycle γ . The Arvola's word of \mathfrak{s} is $a_{\mathfrak{s}} = x_2 x_4 x_2^{-1}$. So we obtain that :

$$\sigma_{\gamma} = x_2 x_4^{-1} x_2^{-1},$$

because the crossing between γ and \mathfrak{s} is negative.

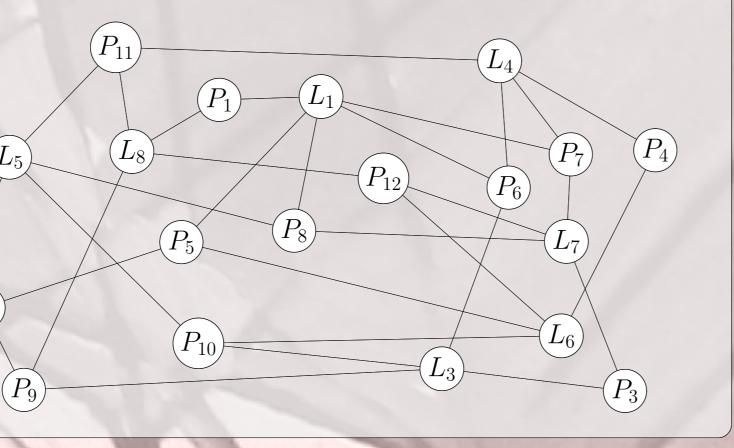
Definition. For any cycle ε in $M(\mathcal{A})$, we define the uncrossing word δ_{ε} as a product of the x_i such that $\delta_{\varepsilon}\varepsilon$ is the path in $Im(\sigma)$ corresponding to ε (i.e. such that $\forall e \in \pi_1(\Gamma_{\mathcal{A}}), e \in \sigma^{-1}(\varepsilon) \Rightarrow \sigma(e) = \delta_{\varepsilon}\varepsilon$).

Let S be the normal sub-group of $\pi_1(M(\mathcal{A}))$ generated by the elements $\delta_{\varepsilon} \varepsilon \sigma_{\varepsilon}^{-1}$, where ε are the cycles of $\pi_1(M(\mathcal{A}))$.

 $Point - vertices : v_P, P \in P$ $Line - vertices : v_L, L \in \mathcal{A}.$

The edges of $\Gamma(\mathcal{A})$ are of the form Y(L, P), with $P \in \mathcal{P}$, $L \in \mathcal{A}$ and $P \in L$.

The Figure below gives the incidence graph of the positive MacLane arrangement.



The boundary manifold

The boundary manifold depends only on the combinatorics of \mathcal{A} . The following proposition describes a presentation of $\pi_1(M(A))$ from the incidence graph.

Proposition ([BGB12]). The fundamental group $\pi_1(M(\mathcal{A}))$ admits the following presentation:

• A set of generators $\{x_i \mid L_i \in A\}$, that represent the loops around the

Theorem ([BGB12]). Let \mathcal{A} be a complex line arrangement, $M_{\mathcal{A}}$ be the boundary manifold, and $\Gamma_{\mathcal{A}}$ the incidence graph of \mathcal{A} . There exists a group S such that the following short sequence is exact.

 $0 \to S \xrightarrow{\phi} \pi_1(M(\mathcal{A})) \xrightarrow{i_*} \pi_1(E(\mathcal{A})) \to 0,$

where i_* is induced by the inclusion of $M(\mathcal{A})$ in $E(\mathcal{A})$. Furthermore, a presentation of S can be computed from the wiring diagram $W_{\mathcal{A},\gamma}$.

Moreover, the generators of this presentation of S can be expressed in terms of the generators of Proposition below.

Sketch of the proof :

• The surjectivity of i_* comes from the Zariski-Van Kampen and the isomorphism between $\pi_1(\mathbb{C}\mathcal{P}^2 - \mathcal{A})$ and $\pi_1(\mathbb{C}^2 - (\mathcal{A} - L_0))$.

- lines.
- A set of generators $\{e_{i,j}\}$, indexed by the edges $Y(P_i, L_j)$ that are not in the maximal tree.
- For each singular point P_i , a set of relations given by the cyclic commutator $[l_{j_1}x_{j_1}l_{j_1}^{-1}, \ldots, l_{j_m}x_{j_m}l_{j_m}^{-1}]$ where L_{j_1}, \ldots, L_{j_m} are the lines that pass through P_i , and l_{j_s} is e_{i,j_s} if $Y(P_i, L_{j_s})$ is not in the maximal tree, and trivial otherwise.
- Since S is constructed as a subgroup of π₁(M(A)), then Φ is one-to-one.
 We glue on the cycle of the boundary manifold some 2-cells which give the retractation of δ_εε on σ_ε. So the composition map i_{*} Φ is zero.
- To show the exactness of the short exact sequence, we prove that the relation of the quotient $\pi_1(M(\mathcal{A}))/S$ implies the usual relation of $\pi_1(E(\mathcal{A}))$.

References

- [Arv92] William A. Arvola, The fundamental group of the complement of an arrangement of complex hyperplanes, Topology **31** (1992), 757–765.
 [BGB12] Enrique Artal Bartolo, Benoît Guerville, and Miguel Marco Buzunáriz, Boundary in the second sec
- manifold and complement of complex line arrangement, 2012.
- [BRAB05] Enrique Artal Bartolo, Jorge Carmona Ruber, José Ignacio Cogolludo Agustin, and
- Miguel Marco Buzunáriz, *Topology and combinatorics of real line arrangements*, Compositio Mathematica **141** (2005).
- [CS08] Daniel C. Cohen and Alexander I. Suciu, *The boundary manifold of a complex line arrangement*, 2008.
- [Hir97] Eriko Hironaka, Boundary manifolds of line arrangements, Math. Annalen **319** (1997), 2001–32061.